“A mixed-studies systematic review and meta-analysis of school-based interventions to promote physical activity and/or reduce sedentary time in children”
Michelle Jones, Emmanuel Defever, Ayland Letsinger, James Steeleb, Kelly AMackintosh.
Journal of Sport and Health Science – Volume 9, Issue 1, January 2020, Pages 3-17
Abstract
Lo scopo di questa revisione sistematica di studi misti è stato quello di accertare l’efficacia degli interventi a scuola nell’aumentare l’attività fisica (PA) e/o nel ridurre il tempo di sedentarietà (ST) nei bambini di età compresa tra 5 e 11 anni, nonché per verificarne l’efficacia in relazione alle categorie della teoria delle opportunità ampliate, estese e potenziate (TEO).
Metodi
Aderendo alle linee guida sui Rapporti Preferiti per le Revisioni Sistematiche e le Meta-analisi (PRISMA), sono stati cercati 5 database utilizzando termini di ricerca predefiniti. In seguito al titolo e alla proiezione astratta di 1115 registrazioni, la rimozione di duplicati (n = 584) e articoli che non soddisfacevano i criteri di inclusione concordati “a priori” (n = 419) ha riguardato 112 registrazioni che erano state sottoposti allo screening del testo completo. Due revisori indipendenti hanno successivamente utilizzato lo strumento di valutazione a metodi misti per valutare la qualità metodologica di 57 studi completi che soddisfacevano i criteri di inclusione dopo lo screening. Gli interventi sono stati riassunti usando la checklist TIDierR e TEO. La forza dell’evidenza è stata determinata utilizzando un sistema di classificazione a 5 livelli utilizzando un albero decisionale pubblicato.
Risultati
Le valutazioni complessive delle prove per tutti gli interventi sviluppati all’interno delle strutture scolastiche sono state: nessun evidenza per effetti sull’attività fisica da moderata a vigorosa (MVPA) e prove inconcludenti di effetti sulla sedentarietà. In relazione al TEO, l’aumento della PA sembrava essere il tipo di intervento più promettente per MVPA, con moderata effetto d’evidenza, mentre l’estensione e il potenziamento delle opportunità di PA non hanno dimostrato alcuna efficacia. Un problema critico di possibile comportamento compensativo è stato identificato dall’analisi dell’effetto d’intervento in relazione alla durata della misurazione della PA; quando gli studi hanno misurato i cambiamenti nella PA durante l’intervento attuale, ci sono state evidenze di tale effetto, mentre quelli che hanno misurato i cambiamenti nella PA durante il giorno di scuola hanno presentato evidenze inconcludenti d’effetto e quelli che hanno misurato i cambiamenti nella PA durante un’intera giornata non hanno prodotto evidenze di effetto. Due meta – analisi degli studi che utilizzavano una misura dell’accelerometro (inteso come aumento) di un’intera giornata per MVPA o ST hanno mostrato un effetto significativo, ma moderato per MVPA (dimensione dell’effetto = 0,51; intervallo di confidenza al 95% (CI): 0,02-0,99) e un effetto ampio, ma non significativo per ST (dimensione dell’effetto = 1,15; IC al 95%: da -1,03 a 3,33); entrambe le meta – analisi hanno dimostrato bassa precisione, notevole incoerenza ed elevata eterogeneità.
La prossima figura mostra il diagramma forestale di studi che riportano i risultati MVPA. L’analisi di sensibilità ha rivelato che le stime degli effetti per MVPA non sono state più significative dopo la rimozione di numerosi studi individuali, sebbene l’entità delle stime e la loro precisione fossero simili (rimozione di Bugge e altri 80 = 0,53, IC al 95%: da -0,03 a 1,08; rimozione di Cohen e altri 57 = 0,50, IC al 95%: da –0,05 a 1,06; rimozione di Crouter e altri 58 = 0,52, IC al 95%: da -0,03 a 1,07; rimozione di Drummy e altri 60 = 0,52, 95% CI: da –0,03 a 1,07; rimozione di Kriemler e altri 64 = 0,54, IC al 95%: da –0,01 a 1,10), ad eccezione di Howe e altri 84 che hanno ridotto la stima, ma hanno aumentato la precisione a 0,31 (95% CI: da –0,02 a 0,64) e Mendoza e altri 66, che hanno ridotto la stima a 0,38 (IC al 95%: da –0,07 a 0,82).
Figura: effetti principali per la misurazione con accellerometro dell’attività fisica moderata – vigorosa. Diagramma forestale per differenza media standardizzata di cambiamento nell’attività fisica tra gruppi d’intervento e gruppi di controllo in interventi di attività fisica a scuola nei bambini.
Conclusione
Le strategie per aumentare l’MVPA e ridurre la ST tra i bambini sono essenziali, dati i benefici per la salute che possono derivare e l’importanza dell’ambiente scolastico come luogo per interventi di promozione della salute. L’attuale revisione non ha identificato prove di effetti sull’MVPA per interventi rivolti ai bambini e implementati all’interno di contesti scolastici, e non ci sono state prove conclusive di effetti su ST. Il TEO è stato un quadro facilmente applicabile e utile per classificare il tipo di intervento e ha portato a valutazioni differenziate delle prove, con prove moderate di espansione, prove inconcludenti per l’estensione e nessuna prova per il miglioramento delle opportunità di PA. Le attività nei club dopo scuola, i viaggi attivi, piccoli momenti di PA in classe e l’apprendimento fisicamente attivo sembra essere stati gli interventi più promettenti, ma anche la sostenibilità e la portata dovrebbero essere prese in considerazione. Nell’analisi dell’effetto d’intervento in relazione alla durata della misurazione della PA, la questione critica del comportamento compensativo è stata identificata come una considerazione importante. Quando gli studi hanno misurato i cambiamenti nella PA durante l’intervento effettivo, ci sono state evidenze moderate degli effetti, mentre ci sono state evidenze inconcludenti di cambiamenti nella PA quando questi sono stati valutati durante il giorno di scuola. Non ci sono evidenze degli effetti se misurati nel corso di un’intera giornata. I risultati hanno importanti implicazioni per la ricerca sugli interventi futuri in termini di progettazione, attuazione e valutazione degli interventi.
Riferimenti bibliografici
1. Janssen, A.G. Leblanc
Systematic review of the health benefits of physical activity and fitness in school-aged children and youth Int J Behav Nutr Phys Act, 7 (2010), p. 40, 10.1186/1479-5868-7
2 World Health Organization. Global recommendations on physical activity for health 5–17 years old. Available at: https://www.who.int/dietphysicalactivity/factsheet_young_people/en/; 2017. [accessed 06.10.2018].
3 T.N. Gomes, P.T. Katzmarzyk, D. Hedeker, M. Fogelholm, M. Standage, V. Onywera, et al.
Correlates of compliance with recommended levels of physical activity in children
Sci Rep, 7 (2017), p. 16507, 10.1038/s41598-017-16525-9
4 M.S. Tremblay, J.D. Barnes, S.A. González, P.T. Katzmarzyk, V.O. Onywera, J.J. Reilly, et al.
Global matrix 2.0: report card grades on the physical activity of children and youth comparing 38 countries
J Phys Act Health, 13 (Suppl. 2) (2016), pp. S343-S366
5 V. Carson, S. Hunter, N. Kuzik, C.E. Gray, V.J. Poitras, J. Chaput, et al.
Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update Appl Physiol Nutr Metab, 41 (Suppl. 3) (2016), pp. S240-S265
6 M.S. Tremblay, V. Carson, J. Chaput, S. Connor Gorber, T. Dinh, M. Duggan, et al.
Canadian 24-hour movement guidelines for children and youth: an integration of physical activity, sedentary behaviour, and sleep Appl Physiol Nutr Metab, 41 (Suppl. 3) (2016), pp. S311-S327
7 R. Telama, X. Yang, E. Leskinen, A. Kankaanpaa, M. Hirvensalo, T. Tammelin, et al.
Tracking of physical activity from early childhood through youth into adulthood Med Sci Sports Exerc, 46 (2014), pp. 955-962
8 M.A. Farooq, K.N. Parkinson, A.J. Adamson, M.S. Pearce, J.K. Reilly, A.R. Hughes, et al.
Timing of the decline in physical activity in childhood and adolescence: gateshead millennium cohort study Br J Sports Med, 52 (2018), pp. 1002-1006
9 A.R. Cooper, A. Goodman, A.S. Page, L.B. Sherar, D.W. Esliger, E.M. Sluijs, et al.
Objectively measured physical activity and sedentary time in youth: the International Children’s Accelerometry Database (ICAD) Int J Behav Nutr Phys Act, 12 (2015), p. 113, 10.1186/s12966-015-0274-5
10 R. Jago, E. Solomon-Moore, C. Macdonald-Wallis, S.J. Sebire, J.L. Thompson, D.A. Lawlor
Change in children’s physical activity and sedentary time between year 1 and year 4 of primary school in the B-PROACT1V cohort Int J Behav Nutr Phys Act, 14 (2017), pp. 33-46
11 A.R. Cooper, A. Goodman, A.S. Page, L.B. Sherar, D.W. Esliger, E.M.F. van Sluijs, et al.
Objectively measured physical activity and sedentary time in youth: the International Children’s Accelerometry Database (ICAD) Int J Behav Nutr Phys Act, 12 (2015), p. 113, 10.1186/s12966-015-0274-5
12 H.E. Brown, A.J. Atkin, J. Panter, K. Corder, G. Wong, M.J. Chinapaw, et al.
Family-based interventions to increase physical activity in children: a meta-analysis and realist synthesis protocol BMJ Open, 4 (2014), Article e005439, 10.1136/bmjopen-2014-005439
13 K.R. Fox, A. Cooper, J. McKenna
The school and promotion of children’s health-enhancing physical activity: perspectives from the United Kingdom J Teach Phys Educ, 23 (2004), pp. 338-358
14 R. Langford, C. Bonell, H. Jones, T. Pouliou, S. Murphy, E. Waters, et al.
The World Health Organization’s health promoting schools framework: a Cochrane systematic review and meta-analysis BMC Public Health, 15 (2015), p. 130, 10.1186/s12889-015-1360-y
15 M. Booth, A. Okely
Promoting physical activity among children and adolescents: the strengths and limitations of school-based approaches Health Promot J Austr, 16 (2005), pp. 52-54
16 M. Dobbins, H. Husson, K. DeCorby, R.L. LaRocca
School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18 Cochrane Database Syst Rev, 2 (2013), Article CD007651, 10.1002/14651858.CD007651.pub2
17 S. Hynynen, M.M. van Stralen, F.F. Sniehotta, V. Araújo-Soares, W. Hardeman, M.J.M. Chinapaw, et al. A systematic review of school-based interventions targeting physical activity and sedentary behaviour among older adolescents Int Rev Sport Exerc Psychol, 9 (2016), pp. 22-44
18 K.L. Morton, A.J. Atkin, K. Corder, M. Suhrcke, E.M. van Sluijs
The school environment and adolescent physical activity and sedentary behaviour: a mixed-studies systematic review Obes Rev, 17 (2016), pp. 142-158
19 M.B. Owen, W.B. Curry, C. Kerner, L. Newson, S.J. Fairclough The effectiveness of school-based physical activity interventions for adolescent girls: a systematic review and meta-analysis Prev Med, 105 (2017), pp. 237-249
20 R. Borde, J.J. Smith, R. Sutherland, N. Nathan, D.R. Lubans Methodologicalal considerations and impact of school-based interventions on objectively measured physical activity in adolescents: a systematic review and meta-analysis Obes Rev, 18 (2017), pp. 476-490
21 H.E. Erwin, M. Ickes, S. Ahn, A. Fedewa Impact of recess interventions on children’s physical activity-a meta-analysis Am J Health Promot, 28 (2014), pp. 159-167
22 Y. Escalante, A. García-Hermoso, K. Backx, J.M. Saavedra Playground designs to increase physical activity levels during school recess: a systematic review Health Educ Behav, 41 (2014), pp. 138-144
23 N.D. Ridgers, J. Salmon, A. Parrish, R.M. Stanley, A.D. Okely Physical activity during school recess Am J Prev Med, 43 (2012), pp. 320-328
24 R. Jago, T. Baranowski Non-curricular approaches for increasing physical activity in youth: a review Prev Med, 39 (2004), pp. 157-163
25 E. Norris, N. Shelton, S. Dunsmuir, O. Duke-Williams, E. Stamatakis Physically active lessons as physical activity and educational interventions: a systematic review of methods and results Prev Med, 72 (2015), pp. 116-125
26 C. Lonsdale, R.R. Rosenkranz, L.R. Peralta, A. Bennie, P. Fahey, D.R. Lubans A systematic review and meta-analysis of interventions designed to increase moderate-to-vigorous physical activity in school physical education lessons Prev Med, 56 (2013), pp. 152-161
27 R. Mears, R. Jago Effectiveness of after-school interventions at increasing moderate-to-vigorous physical activity levels in 5- to 18-year olds: a systematic review and meta-analysis
Br J Sports Med, 50 (2016), pp. 1315-1324
28 J. Salmon, M.L. Booth, P. Phongsavan, N. Murphy, A. Timperio Promoting physical activity participation among children and adolescents Epidemiol Rev, 29 (2007), pp. 144-159
29 A. Timperio, J. Salmon, K. Ball Evidence-based strategies to promote physical activity among children, adolescents and young adults: review and update J Sci Med Sport, 7 (2004), pp. 20-29
30 F. De Meester, F.J. van Lenthe, H. Spittaels, N. Lien, I. De Bourdeaudhuij
Interventions for promoting physical activity among European teenagers: a systematic review
Int J Behav Nutr Phys Act, 6 (2009), p. 82, 10.1186/1479-5868-6-82
31 N. Pearson, R. Braithwaite, S.J. Biddle The effectiveness of interventions to increase physical activity among adolescent girls: a meta-analysis Acad Pediatr, 15 (2015), pp. 9-18
32 M.J. Camacho-Miñano, N.M. LaVoi, D.J. Barr-Anderson Interventions to promote physical activity among young and adolescent girls: a systematic review Health Educ Res, 26 (2011), pp. 1025-1049
33 S. Kriemler, U. Meyer, E. Martin, E.M. Sluijs, L.B. Andersen, B.W. Martin Effect of school-based interventions on physical activity and fitness in children and adolescents: a review of reviews and systematic update Br J Sports Med, 45 (2011), pp. 923-930
34 E.M. van Sluijs, A.M. McMinn, S.J. Griffin Effectiveness of interventions to promote physical activity in children and adolescents: systematic review of controlled trials BMJ, 335 (2007), p. 703,
35 A. van Grieken, N.P. Ezendam, W.D. Paulis, J.C. van der Wouden, H. Raat Primary prevention of overweight in children and adolescents: a meta-analysis of the effectiveness of interventions aiming to decrease sedentary behaviour Int J Behav Nutr Phys Act, 9 (2012), p. 61, 10.1186/1479-5868-9-61
36 P. Pluye, Q.N. Hong Combining the power of stories and the power of numbers: mixed methods research and mixed studies reviews Annu Rev Public Health, 35 (2014), pp. 29-45
37 M.W. Beets, A. Okely, R.G. Weaver, C. Webster, D. Lubans, T. Brusseau, et al. The theory of expanded, extended, and enhanced opportunities for youth physical activity promotion Int J Behav Nutr Phys Act, 13 (2016), p. 120, 10.1186/s12966-016-0442-2
38 D. Moher, L. Shamseer, M. Clarke, D. Ghersi, A. Liberati, M. Petticrew, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement Syst Rev, 4 (2015), p. 1, 10.1186/2046-4053-4-1
39 P. Pluye, M. Gagnon, F. Griffiths, J. Johnson-Lafleur A scoring system for appraising mixed methods research, and concomitantly appraising qualitative, quantitative and mixed methods primary studies in Mixed Studies Reviews Int J Nurs Stud, 46 (2009), pp. 529-546
40. R. Pace, P. Pluye, G. Bartlett, A.C. Macaulay, J. Salsberg, J. Jagosh, et al. Testing the reliability and efficiency of the pilot mixed methods appraisal tool (MMAT) for systematic mixed studies review Int J Nurs Stud, 49 (2012), pp. 47-53
41 R.Q. Souto, V. Khanassov, Q.N. Hong, P.L. Bush, I. Vedel, P. Pluye Systematic mixed studies reviews: updating results on the reliability and efficiency of the mixed methods appraisal tool Int J Nurs Stud, 52 (2015), pp. 500-501
42 T.C. Hoffmann, P.P. Glasziou, I. Boutron, R. Milne, R. Perera, D. Moher, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide BMJ, 348 (2014), p. g1687, 10.1136/bmj.g1687
43 T.C. Hoffmann, A.D. Oxman, J.P. Ioannidis, D. Moher, T.J. Lasserson, D.I. Tovey, et al.
Enhancing the usability of systematic reviews by improving the consideration and description of interventions BMJ, 358 (2017), p. j2998, 10.1136/bmj.j2998
44 S.B. Morris Estimating effect sizes from pretest-posttest-control group designs Org Res Methods, 11 (2008), pp. 364-386
45 J. Cohen Statistical Power Analysis for the Behavioural Sciences L. Erlbaum Associates, Hillsdale, NJ (1988)
46 J.P.T. Higgins, S. Green Cochrane Handbook for Systematic Reviews of Interventions The Cochrane Collaboration, London (2011)
47 M. Adkins, G.A. Brwon, K. Heelan, C. Ansorge, B.S. Shaw, I. Shaw Can dance exergaming contribute to improving physical activity levels in elementary school children? Fr J Phys Health Educ Recreat Dance, 19 (2013), pp. 576-585
48 D.A. Dzewaltowski, R.R. Rosenkranz, K.S. Geller, K.J. Coleman, G.J. Welk, T.J. Hastmann, et al. HOP’N after-school project: an obesity prevention randomized controlled trial
Int J Behav Nutr Phys Act, 7 (2010), p. 90
49 M.W. Efrat Exploring effective strategies for increasing the amount of moderate-to-vigorous physical activity children accumulate during recess: a quasi-experimental intervention study
J Sch Health, 83 (2013), pp. 265-272
50 M. Janssen, J.W.R. Twisk, H.M. Toussaint, W. van Mechelen, E.A. Verhagen
Effectiveness of the PLAYgrounds programme on PA levels during recess in 6-year-old to 12-year-old children Br J Sports Med, 49 (2015), pp. 259-264
51 S.J. Verstraete, G.M. Cardon, DirkL De Clercq, Ilse M. De Bourdeaudhuij Increasing children’s physical activity levels during recess periods in elementary schools: the effects of providing game equipment Eur J Public Health, 16 (2006), pp. 415-419
52 L. Engelen, A.C. Bundy, G. Naughton, J.M. Simpson, A. Bauman, J. Ragen, et al. Increasing physical activity in young primary school children: it’s child’s play: a cluster randomised controlled trial Prev Med, 56 (2013), pp. 319-325
53 J.L. Huberty, M.W. Beets, A. Beighle, G. WelkEnvironmental modifications to increase physical activity during recess: preliminary findings from ready for recess J Phys Act Health, 8 (Suppl. 2) (2011), pp. S249-S256
54 J.L. Huberty, M.W. Beets, A. Beighle, P.F. Saint-Maurice, G. Welk Effects of ready for recess, an environmental intervention, on physical activity in third- through sixth-grade children J Phys Act Health, 11 (2014), pp. 384-395
55 R. Martin, E. Murtagh Active classrooms: a cluster randomized controlled trial evaluating the effects of a movement integration intervention on the physical activity levels of primary school children J Phys Act Health, 14 (2017), pp. 290-300
56 N. Riley, D.R. Lubans, K. Holmes, P.J. Morgan Findings from the easy minds cluster randomized controlled trial: evaluation of a physical activity integration program for mathematics in primary schools J Phys Act Health, 13 (2015), pp. 198-206
57 K.E. Cohen, P.J. Morgan, R.C. Plotnikoff, R. Callister, D.R. Lubans Physical activity and skills intervention: SCORES cluster randomized controlled trial Med Sci Sports Exerc, 47 (2015), pp. 765-774
58 S.E. Crouter, S.D. de Ferranti, J. Whiteley, S.K. Steltz, S.K. Osganian, H.A. Feldman, et al.
Effect on physical activity of a randomized afterschool intervention for inner city children in 3rd to 5th grade PLoS One, 10 (2015)
59 J.E. Donnelly, J.L. Greene, C.A. Gibson, B.K. Smith, R.A. Washburn, D.K. Sullivan, et al.
Physical activity across the curriculum (PAAC): a randomized controlled trial to promote physical activity and diminish overweight and obesity in elementary school children Prev Med, 49 (2009), pp. 336-341
60 C. Drummy, E.M. Murtagh, D.P. McKee, G. Breslin, G.W. Davison, M.H. Murphy
The effect of a classroom activity break on physical activity levels and adiposity in primary school children J Paediatr Child Health, 52 (2016), pp. 745-749
61 V.L. Farmer, S.M. Williams, J.I. Mann, G. Schofield, J.C. McPhee, R.W. Taylor The effect of increasing risk and challenge in the school playground on physical activity and weight in children: a cluster randomised controlled trial (PLAY)
Int J Obes, 41 (2017), pp. 793-800
62 S. Going, J. Thompson, S. Cano, D. Stewart, E. Stone, L. Harnack, et al. The effects of the pathways obesity prevention program on physical activity in American Indian children Prev Med, 37 (6 Pt 2) (2003), pp. S62-S69
63 R.R. Kipping, L.D. Howe, R. Jago, R. Campbell, S. Wells, C.R. Chittleborough, et al.
Effect of intervention aimed at increasing physical activity, reducing sedentary behaviour, and increasing fruit and vegetable consumption in children: active for life year 5 (AFLY5) school-based cluster randomised controlled trial BMJ, 348 (2014), p. g3256, 10.1136/bmj.g3256
64 S. Kriemler, L. Zahner, C. Schindler, U. Meyer, T. Hartmann, H. Hebestreit
Effect of school based physical activity programme (KISS) on fitness and adiposity in primary schoolchildren: cluster randomised controlled trial
BMJ, 340 (2010), p. c785, 10.1136/bmj.c785
65 K.T. Magnusson, I. Sigurgeirsson, T. Sveinsson, E. Johannsson Assessment of a two-year school-based physical activity intervention among 7-9-year-old children Int J Behav Nutr Phys Act, 8 (2011), p. 138, 10.1186/1479-5868-8-138
66 J.A. Mendoza, K. Watson, T. Baranowski, T.A. Nicklas, D.K. Uscanga, M.J. Hanfling
The walking school bus and children’s physical activity: a pilot cluster randomized controlled trial
Pediatrics, 128 (2011), pp. e537-e544
67 N.C. Moller, J. Tarp, E.F. Kamelarczyk, J.C. Brond, H. Klakk, N. Wedderkopp
Do extra compulsory physical education lessons mean more physically active children: findings from the childhood health, activity, and motor performance school study Denmark (The CHAMPS-study DK) Int J Behav Nutr Phys Act, 11 (2014), p. 121
68 G.K. Resaland, E. Aadland, V.F. Moe, K.N. Aadland, T. Skrede, M. Stavnsbo, et al.
Effects of physical activity on schoolchildren’s academic performance: the active smarter kids (ASK) cluster-randomized controlled trial Prev Med, 91 (2016), pp. 322-328
69 J.F. Sallis, T.L. McKenzie, J.E. Alcaraz, B. Kolody, N. Faucette, M.F. Hovell The effects of a 2-year physical education program (SPARK) on physical activity and fitness in elementary school students Am J Public Health, 87 (1997), pp. 1328-1334
70 S.J. Verstraete, G.M. Cardon, D.L. de Clercq, I.M. de Bourdeaudhuij A comprehensive physical activity promotion programme at elementary school: the effects on physical activity, physical fitness and psychosocial correlates of physical activity Public Health Nutr, 10 (2007), pp. 477-484
71 M. Kang, T.M. Brinthaupt Effects of group and individual-based step goals on children’s physical activity levels in school Pediatr Exerc Sci, 21 (2009), pp. 148-158
72 M.T. Mahar, S.K. Murphy, D.A. Rowe, J. Golden, A.T. Shields, T.D. Raedeke Effects of a classroom-based program on physical activity and on-task behaviour Med Sci Sports Exerc, 38 (2006), pp. 2086-2094
73 S. Duncan, J.C. McPhee, P.J. Schluter, C. Zinn, R. Smith, G. Schofield Efficacy of a compulsory homework programme for increasing physical activity and healthy eating in children: the healthy homework pilot study Int J Behav Nutr Phys Act, 8 (2011), p. 127, 10.1186/1479-5868-8-127
74 N. Eather, P.J. Morgan, D.R. Lubans Improving the fitness and physical activity levels of primary school children: results of the fit-4-fun group randomized controlled trial Prev Med, 56 (2013), pp. 12-19
75 P.J. Naylor, H.M. Macdonald, D.E. Warburton, K.E. Reed, H.A. McKay An active school model to promote physical activity in elementary schools: action schools! BC Br J Sports Med, 42 (2008), pp. 338-343
76 N.D. Ridgers, G. Stratton, S.J. Fairclough, J.W.R. Twisk Children’s physical activity levels during school recess: a quasi-experimental intervention study Int J Behav Nutr Phys Act, 4 (2007), p. 19, 10.1186/1479-5868-4-19
77 A.L. Cradock, J.L. Barrett, J. Carter, A. McHugh, J. Sproul, E.T. Russo, et al.
Impact of the Boston active school day policy to promote physical activity among children
Am J Health Promot, 28 (Suppl. 3) (2014), pp. S54-S64
78 A. Johnstone, A.R. Hughes, X. Janssen, J.J. Reilly Pragmatic evaluation of the Go2Play Active Play intervention on physical activity and fundamental movement skills in children Prev Med Rep, 7 (2017), pp. 58-63
79 R.G. Weaver, C.A. Webster, C. Egan, C.M.C. Campos, R.D. Michael, S. Vazou Partnerships for active children in elementary schools: outcomes of a 2-year pilot study to increase physical activity during the school day Am J Health Promot, 32 (2018), pp. 621-630
80 A. Bugge, B. El-Naaman, M. Dencker, K. Froberg, I.M. Holme, R.G. McMurray, et al. Effects of a three-year intervention: the Copenhagen school child intervention study Med Sci Sports Exerc, 44 (2012), pp. 1310-1317
81 R.L. Carson, D.M. Castelli, A.C. Pulling Kuhn, J.B. Moore, M.W. Beets, A. Beighle, et al.
Impact of trained champions of comprehensive school physical activity programs on school physical activity offerings, youth physical activity and sedentary behaviours Prev Med, 69 (Suppl. 1) (2014), pp. S12-S19
82 T. Gorely, M.E. Nevill, J.G. Morris, D.J. Stensel, A. Nevill Effect of a school-based intervention to promote healthy lifestyles in 7-11 year old children Int J Behav Nutr Phys Act, 6 (2009), p. 5, 10.1186/1479-5868-6-5
83 K.A. Heelan, B.M. Abbey, J.E. Donnelly, M.S. Mayo, G.J. Welk Evaluation of a walking school bus for promoting physical activity in youth J Phys Act Health, 6 (2009), pp. 560-567
84 C.A. Howe, P.S. Freedson, S. Alhassan, H.A. Feldman, S.K. Osganian
A recess intervention to promote moderate-to-vigorous physical activity
Pediatr Obes, 7 (2012), pp. 82-88
85 D.H. Van Kann, S.P. Kremers, N.K. de Vries, S.I. de Vries, M.W. Jansen The effect of a school-centered multicomponent intervention on daily physical activity and sedentary behaviour in primary school children: the active living study Prev Med, 89 (2016), pp. 64-69
86 B.P. Hyndman, A.C. Benson, S. Ullah, A. Telford Evaluating the effects of the Lunchtime Enjoyment Activity and Play (LEAP) school playground intervention on children’s quality of life, enjoyment and participation in physical activity BMC Public Health, 14 (2014), p. 164,
87 C.A. Loucaides, R. Jago, I. Charalambous Promoting physical activity during school break times: piloting a simple, low cost intervention Prev Med, 48 (2009), pp. 332-334
88 R.D. Burns, T.A. Brusseau, J.C. Hannon Effect of a comprehensive school physical activity program on school day step counts in children J Phys Act Health, 12 (2015), pp. 1536-1542
89 E. Sigmund, W. El Ansari, D. Sigmundova Does school-based physical activity decrease overweight and obesity in children aged 6–9 years? A two-year non-randomized longitudinal intervention study in the Czech Republic BMC Public Health, 12 (2012), p. 570,
90 E.L. Eyre, V.M. Cox, S.L. Birch, M.J. Duncan An integrated curriculum approach to increasing habitual physical activity in deprived South Asian children Eur J Sport Sci, 16 (2016), pp. 381-390
91 R.P. Pangrazi, A. Beighle, T. Vehige, C. Vack Impact of promoting lifestyle activity for youth (PLAY) on children’s physical activity J Sch Health, 73 (2003), pp. 317-321
92 K.A. Vander Ploeg, J. McGavock, K. Maximova, P.J. Veugelers School-based health promotion and physical activity during and after school hours Pediatrics, 133 (2014), pp. e371-e378, 10.1542/peds.2013-2383
93 T.A. Brusseau, J. Hannon, R. Burns The effect of a comprehensive school physical activity program on physical activity and health-related fitness in children from low-income families
J Phys Act Health, 13 (2016), pp. 888-894
94 J.L. Huberty, M. Siahpush, A. Beighle, E. Fuhrmeister, P. Silva, G. Welk
Ready for recess: a pilot study to increase physical activity in elementary school children
J Sch Health, 81 (2011), pp. 251-257
95 E. Holt, T. Bartee, K. Heelan Evaluation of a policy to integrate physical activity into the school day J Phys Act Health, 10 (2013), pp. 480-487
96 K.M. King, J. Ling Results of a 3-year, nutrition and physical activity intervention for children in rural, low-socioeconomic status elementary schools Health Educ Res, 30 (2015), pp. 647-659
97 R.D. Burns, T.A. Brusseau, J.C. Hannon Effect of comprehensive school physical activity programming on cardio-metabolic health markers in children from low-income schools J Phys Act Health, 14 (2017), pp. 1-20
98 T.L. Goh Children’s physical activity and on-task behaviour following active academic lessons
Quest, 69 (2017), p. 177
99 B. Dauenhauer, X. Keating, D. Lambdin Effects of a three-tiered intervention model on physical activity and fitness levels of elementary school children J Prim Prev, 37 (2016), pp. 313-327
100 M. Duncan, S. Birch, L. Woodfield Efficacy of an integrated school curriculum pedometer intervention to enhance physical activity and to reduce weight status in children Eur Phys Edu Rev, 18 (2012), pp. 396-407
101 J. Ling, K.M. King, B.J. Speck, S. Kim, D. Wu
Preliminary assessment of a school-based healthy lifestyle intervention among rural elementary school children J Sch Health, 84 (2014), pp. 247-255
102 M. Oliver, G. Schofield, E. McEvoy An integrated curriculum approach to increasing habitual physical activity in children: a feasibility study J Sch Health, 76 (2006), pp. 74-79
103 P.P. Cheung Parental attitude on children’s after-school physical activity participation: lesson from a pilot study Asian J Phys Edu Recr, 21 (2015), pp. 13-20
104 B. Metcalf, W. Henley, T. Wilkin Effectiveness of intervention on physical activity of children: systematic review and meta-analysis of controlled trials with objectively measured outcomes (EarlyBird 54) BMJ, 345 (2012), p. e5888, 10.1136/bmj.e5888
105 A.V. Rowlands, E.L. Pilgrim, R. Eston Seasonal changes in children’s physical activity: an examination of group changes, intra-individual variability and consistency in activity pattern across season Ann Hum Biol, 36 (2009), pp. 363-378
106 F. Harrison, Esther M.F. van Sluijs, K. Corder, U. Ekelund, A. Jones The changing relationship between rainfall and children’s physical activity in spring and summer: a longitudinal study Int J Behav Nutr Phys Act, 12 (2015), 10.1186/s12966-015-0202-8
107 N.D. Ridgers, S.J. Fairclough, G. Stratton Twelve-month effects of a playground intervention on children’s morning and lunchtime recess physical activity levels J Phys Act Health, 7 (2010), pp. 167-175
108 K.E. Cohen, P.J. Morgan, R.C. Plotnikoff, L.M. Barnett, D.R. Lubans Improvements in fundamental movement skill competency mediate the effect of the SCORES intervention on physical activity and cardiorespiratory fitness in children J Sports Sci, 33 (2015), pp. 1908-1918
109 R. Love, J. Adams, E.M.F. van Sluijs Are school-based physical activity interventions effective and equitable? A meta-analysis of cluster randomized controlled trials with accelerometer-assessed activity Obes Rev, 20 (2019), pp. 859-870
110 N.D. Ridgers, A. Timperio, E. Cerin, J. Salmon Compensation of physical activity and sedentary time in primary school children Med Sci Sports Exerc, 46 (2014), pp. 1564-1569
111 Tuvey S, Steele J, Horton E, Mayo X, Liguori G, Mann S, et al. Do changes in cardiorespiratory fitness resulting from physical activity interventions impact academic performance and executive function in children and adolescents? A systematic review, meta-analysis, and meta-regression. preprint.
112 E. Budzynski-Seymour, M. Wade, R. Lawson, A. Lucas, J. Steele Heart rate, energy expenditure, and affective responses from children participating in trampoline park sessions compared with traditional extra-curricular sports clubs J Sports Med Phys Fitness, 59 (2019), pp. 1747-1755
113 A.V. Rowlands Moving forward with accelerometer-assessed physical activity: two strategies to ensure meaningful, interpretable, and comparable measures Pediatr Exerc Sci, 30 (2018), pp. 450-456
114 T. Gorely, J.G. Morris, H. Musson, S. Brown, A. Nevill, M.E. Nevill
Physical activity and body composition outcomes of the GreatFun2Run intervention at 20 month follow-up Int J Behav Nutr Phys Act, 8 (2011), p. 74, 10.1186/1479-5868-8-74
115 U. Meyer, C. Schindler, L. Zahner, D. Ernst, H. Hebestreit, W. van Mechelen, et al.
Long-term effect of a school-based physical activity program (KISS) on fitness and adiposity in children: a cluster-randomized controlled trial PLoS One, 9 (2014), p. e87929, 10.1371/journal.pone.0087929
116 P. Freedson, D. Pober, K.F. Janz Calibration of accelerometer output for children Med Sci Sports Exerc, 37 (Suppl. 11) (2005), pp. S523-S530
117 A. Nilsson, U. Ekelund, A. Yngve, M. Söström
Assessing physical activity among children with accelerometers using different time sampling intervals and placements Pediatr Exerc Sci, 14 (2002), pp. 87-96
118 K.R. Evenson, D.J. Catellier, K. Gill, K.S. Ondrak, R.G. McMurray Calibration of two objective measures of physical activity for children J Sports Sci, 26 (2008), pp. 1557-1565
119 G.J. Welk Principles of design and analyses for the calibration of accelerometry-based activity monitors Med Sci Sports Exerc, 37 (Suppl. 11) (2005), pp. S501-S511
120 S.G. Trost, P.D. Loprinzi, R. Moore, K.A. Pfeiffer
Comparison of accelerometer cut points for predicting activity intensity in youth
Med Sci Sports Exerc, 43 (2011), pp. 1360-1368
121 C. Tudor-Locke, D.R. Bassett Jr, W.J. Rutherford, B.E. Ainsworth, C.B. Chan, K. Croteau, et al. BMI-referenced cut points for pedometer-determined steps per day in adults
J Phys Act Health, 5 (Suppl. 1) (2008), pp. S126-S139